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+ Department of Physics, University of Visva-Bharati, Santiniketan-731235, West Bengal, 
India 
$ Department of Physics, University of Ottawa, Ottawa, Canada K1N 6N5 

Received 10 October 1988 

Abstract. Analytic expressions for the spectrum and the wavefunction resulting from the 
relativistic generalisation of the shifted large-N expansion method as applied to the general 
power-law potentials V(ri = B + A r ”  are presented. These expressions obtained in the 
context of the Klein-Gordon equation are then used to compute the mass spectra and 
leptonic decay widths of mesonic states composed of heavy quarks. The relativistic 
corrections are found to be in good agreement with those obtained by elaborate analytic 
( W K B )  and numerical methods. Compact analytic results of the shifted large-N expansion 
for relativistic systems are seen to be applicable to a much wider class of problems than 
are most other approximation methods. 

1. Introduction 

The so-called large- N expansion method, where N is the number of spatial dimensions, 
provides a powerful, systematic and analytic technique for determining energy eigen- 
values and eigenfunctions of a variety of non-relativistic potential problems [ 1,2]. 
Although the method involves expansion in terms of a parameter 1/ K where K = N +21, 
it is non-perturbative in the sense that it does not involve expansion in terms of coupling 
constants contained in the potential. The convergence of this method is rather slow, 
particularly for the s states. This difficulty has been subsequently circumvented by 
Sukhatme and Imbo [3] who suggested a change in the expansion parameter from 
1 /K  to l l K  where ff = N + 2 1 -  a and the shift parameter a was chosen in such a 
manner that the exact analytic expressions for the bound-state energies for the Coulomb 
and  harmonic oscillator potentials are restored. The accuracy of the shifted 1/N 
expansion technique has been tested for a variety of spherically symmetric potentials 
[4-81 which have applications in different areas of physics. 

It is natural to expect that the large-N expansion method should also be useful 
for relativistic bound-state problems. An extension of the unshifted large-N expansion 
method to spherically symmetric relativistic potentials has recently been made by 
Miramontes and Pajares [9] and Chatterjee [ 101. In connection with the Klein-Gordon 
( KG) equation these authors found that the relativistic corrections to the non-relativistic 
limit is non-leading in the 1 /N expansion. However, the rate of convergence of the 
expansion is very slow for the relativistic part of the energy eigenvalue as compared 
to that for the non-relativistic part. 

Recently we have shown [ I l l  that the shifted 1/N method can also be extended 
to the relativistic wave equation for the Coulomb problem. The attractive feature of 
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our work is that the convergence of the relativistic part of the 1/ N expansion is faster 
than the corresponding one obtained in the unshifted framework [9, lo]. Stimulated 
by this observation, we propose here to examine the shifted 1/ N expansion technique 
for the KG equation for the general power-law potentials with a view to studying the 
relativistic effects in hadron spectroscopy. The main trick of our approach lies in the 
fact that it is possible to convert the KG equation to a Schrodinger-like equation to 
which one may subsequently apply the method of [ 4 ] ,  with only one difference that 
one must fix u p  the ‘shift parameter’ in a different way. Analogous to the non-relativistic 
calculation [ 4 ] ,  we obtain closed analytic expressions for the relativistic part (of the 
order 1 /  c’) of the binding energy and leading-order wavefunction. 

The plan of this paper is as follows. In 0 2 ,  the method of reducing the KG equation 
for a spherically symmetric potential to a Schrodinger-like equation is presented and  
the effective potential is established. We also give explicit expressions for the total 
binding energy including relativistic corrections correct up  to order l / c ‘  and the 
leading-order wavefunction. For specific applications, we present in 8 3 the analytic 
results for the mass spectra of qj systems for the power-law potentials of the form 
V( r )  = B + Ar”.  The leading-order wavefunction is also presented for computation of 
relativistic effects to leptonic decay widths of various quarkonia. We compare our 
results (using the shifted 1 /N method) with those of other authors for a variety of 
potentials in three spatial dimensions. A good agreement is observed in general. 
However, for the decay width calculation, we find that harmonic and linear confining 
potentials give worse results than those obtained in the Martin potential. In the 
concluding section, we make a few remarks about the advantage and usefulness of the 
present approach to other areas of physics. 

2. Shifted U N  expansion for a spin-zero relativistic particle 

In this section we will formulate the shifted 1/ N expansion of binding energy and  the 
leading-order wavefunction for a particle moving in a spherically symmetric potential 

V ( r )  = A r ” +  B (1) 

in the KG equation 

( E  - v)*s~, = [ - c 2 h 2 v 2 +  m’c4]+. 

As a first step, one must reduce the radial part of the KG equation to that of the 
Schrodinger-like equation. The radial part of ( 2 )  in N-dimensional hyper-spherical 
coordinates for a particle of rest mass m in the potential V ( r )  is 

h 2  d2 h 2  1 -+ - ( k  - 1 ) (  k - 3) - 7 { [ E  - V (  r ) ] ’  - m2c4}  
( - G d r 2  8mr2 2 mc 

where k = N +21. 
Introducing a shift parameter a through the relation 

E = k - a  

equation (3) becomes 

(3) 

( 4 )  

[ ( E -  V ( r ) ) 2 - m ’ c 4 ]  
h2 d2 1 

2mc’Q 
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where Q is a constant which rescales the potential. Both Q and a will be determined 
later. Following [ 9 ]  the leading-order energy Eo is given by 

( 6 )  

where ro ,  the location of the minimum of the effective potential, is determined from 

Eo = V (  ro) + mc2(1 + h2Q/4m2c2r~) ’ ’*  

In [ 1 1 1  we have discussed the method for reducing ( 5 )  to a Schrodinger-like equation. 
We thus obtain 

in which 

(10) 

Clearly U (  r )  and 8 play the role of the potential and the bound-state energy respectively 
for an  effective non-relativistic problem and so one may apply the previous 1/E 
expansion scheme [ 4 ]  directly. However, the calculation is bound to be complicated 
and  lengthy due  to the complex structure of U ( r )  and ‘8 as given n ( 9 )  and (10). For 
brevity, we give here only the final results: 

1 
g=- [ ( E - -  V ( r o ) I 2 - ( E o -  V(r0))’I. 2mc2 

and the leading-order bound-state wavefunction 
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c ( I )=  (1 +2n,) i2+3(  1 +2n, +2n:)g4+ 5(3 +8n,+6nf+4nj )& 

[ ( 1 + 2 n, ) kf + 12 ( 1 + 2 n, + 2 n :) k, k, + 6( 1 + 2 n, ) kI s', 1 p) = -- 
hw 

+ 2(21+ 59n, + 5 1 n f + 34n5) E: + 2kl  s', + 30 

x (1 + 2n, + 2nf)k16; + 6( 1 + 2n,)E3gl + 2( 11 + 30n, + 3 0 d )  

x E3& + 10( 13 + 40n, + 42nf + 28n:) E,&] (15f) 

[ 4;; k2 + 36( 1 + 2 n,) k1 k2k3 + 8( 1 1 + 30n, + 30n f ) E2 .': 1 c ( 3 )  - - - 
( h w )  

+ 12(57+ 189nr+225nf+ 150n~)k:~,+24(1 +2nr)kik4 

+ 8 ( 3 1 + 78 n, + 78 n ;) kl k, E4] 

[ 8 E : k 3  + 108( 1 +2nr)k:.':+48( 11 +30n,+30nS)klk; 

+30(31+ 109n,+ 141nf+94n:)k?l (15h) 

(15g) 

1 
c(4)  - -- 

( h w I 3  
- 

and 

The expressions for E; and 8, are the same as in [4] with the exception that V(r) and  
its derivatives are to be replaced by U (  r )  and its corresponding derivatives respectively. 
Here n, stands for the radial quantum number. From (1 1) it is clear that the leading 
contribution to 8 is of order k2. The next contribution, of order k; is given in (14). 
It may be pointed out that although our expression (14) is identical to that obtained 
in [4], in our  case w contains non-relativistic as well as relativistic contributions as 
U ( r )  in (9) contains terms of order l /c2.  This will be made more explicit when we 
present the results for the power-law potentials. Expanding all quantities in powers 
of 1/c2, it is possible to separate the contributions to w :  

(17) 

Here w N R  stands for the non-relativistic part independent of c and w R  contains terms 
of order l / c 2  and higher. 

We propose to determine the shift parameter a in such a manner that the non- 
relativistic part of (14) vanishes. This gives 

w = o N R  + w R .  

mWNR a = 2 - 2( 2n, + 1) - 
h 

just as in equation (15) of [4]. Consequently, the term of order I? in (10) picks up  
only a contribution for the relativistic part of the bound-state energy. From ( lo) ,  (1 l ) ,  
(14), (17) and  (18) we get finally 

h2E2 (1+2n,)hwR - 2 k +- (b'O'+ b"'+ b"') 
mc ro mc2rz 

\ 1 / 2  
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For the potential in ( l ) ,  we give here the expansions of the relevant quantities of (19 )  
correct up to order 1/c2: 

h2 E1=- (1+2n , ) ( v+2) l /4  
2 m  

- 3 h 2  
E 2 = - -  4 m  

E3 - = h 2 ( v + 2 ) ( v - 5 ) (  I---- 3 A  v 
2 4 m ( ~ + 2 ) ~ / ~  4 m c 2 v + 2  v - 5  

E4 - = h 2 ( v 2 - 8 v + 2 7 )  ( l+- -  2 A  v ( ~ + 1 ) ( 8 - 3 ~ )  v + 2 )  

96m me2 v + 2  v 2 - 8 v Y 2 7  

h ’[ ( 1 + 2 n,)2( v + 2 )  - 1 1  
1 -  ’ -- 4 m ( ~ + 2 ) ’ / ~  

- h2( v - 7 ) (  v 2 -  5v+24)  5A v 11v3-44v2+25v+128 x y I ( Y + 2 ,  
8 5  = (1---  

480m ( v + 2 )  4mc2 v + 2  ( v - 7 ) ( v 2 - 5 v + 2 4 )  

- h 2 ( ~ 4 - 1 7 ~ 3 + 1 1 9 ~ 2 - 4 6 3 ~ + 1 2 0 0 )  
86 = 

2880m ( v + 2 )  

AV 5 9 ~ ~ -  399v3+ 833 U’+ 3 9 ~  - 3052 x Y / ( Y + 2 )  (’ -2mc2( v + 2 )  v4- 17v3 + 1 19v2 -463 v + 1200 

where 

h2P 
4mAv‘  

x=- 

One may easily check that the first term of each o f  the expressions (20) - (23)  corresponds 
to the non-relativistic result o f  Imbo et a1 [4] .  
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3. Applications 

3. I .  Relativistic mass spectra of q4 systems 

In order to apply the relativistic 1 / E  expansion illustrated in d 2 to the meson spectros- 
copy, one must be able to formulate the effective one-particle KG equation for a system 
of two particles. The relativistic wave equation for a system of two spin-zero particles 
of masses m ,  and m2 bound to each other by a potential V is given by 

( E  - ~ ) + = [ ( - c ~ f i ~ ~ ? + m f c ~ ) ~  ~ + ~ - C ~ ~ ~ ~ ~ + ~ ~ C ~ ) ” ~ ] +  (25)  
where 

Let us now shift the origin to the centre of mass (X, j ,  2 )  of the system. Then the 
coordinates of the particles in the new frame in terms of the relative coordinates are 

m2 
M 

x ; = - t  

where 

5 = x , - x ,  t7 = Y I  - Y2 = 2 ,  - z2 M = m , + m , .  
Ignoring the motion of the centre of mass of the system one may write [12] 

V f = T : *  i = 1 , 2 .  (27) 
Use of (26)  and (27)  in (25)  gives 

[ - ~ ~ f i ~ ( l + A ) ’ C : + m ~ ~ ~ ] ~ ’ ’  

where A = m,/m, .  
Since we are interested in studying the spectra and various other properties of 

quarkonia which are the bound states of identical quark and antiquark, we set m ,  = m2 = 
m. Furthermore, changing over to the centre of mass coordinates, (28) become simpler. 
We thus get 

(29) 
Comparing (29)  and ( 2 )  we find that both the energy and the potential for the 
two-particle case have been scaled down by a factor of two. Taking care of these 
changes of numerical factors, we obtain the expression for the total mass of the 
quarkonium including relativistic effects up  to order 1/ c2: 

( ; E  - f ~ ) ~ = ( - - ~ f “ ~ + m ~ C ~ ) ’ ’ ~ + .  

v + 2 -  z z2 1 
h 2 p  - 2 l i u + 2 )  

M(n, ,  I ) =  B + 2 m c 2 + -  f i 2 (  - ) ( - k ’ + - f T  =+. . . m 2mAv 4 v  72 864-k 

- 4 ( 1 + 2 n , )  1 

...) 2 2 3  + vZI 1 3 2 4  + v Z ~  
9 ( v + 2 )  2 + 1 0 8 ( ~ + 2 ) ~ ’ ’ k 7 ’  

+ 
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in which 

E =  1 + 21+ ( 1  + 2n,)- 

2, = (2-  v)( v +  1 ) ( 1  +6nr+6nf)  

2, = ( v + 1 ) (  v - 2)[ ( v + 1 ) (  v - 2) + (7  v 2  - 3 1 v - 62)nr + (5 v 2  - 29 v - 58)(3 nf  + 2n:)] 

2, = (2-  1 1  v -  v2)( 1 +6n,+6nf)+6v2 

2, = ( v4 -42v3+ 101 v 2  - 28v - 28) + ( 7 v 4  - 86v3+419v2 -484v - 132)nr 

(31) 

+ ( 15v4-  6v3+651 v2 - 1 2 8 4 ~  - 228)nf 

+ (lOv4-4v3+434v2- 856v - 152)n:. 

The expression (30), comprising relativistic corrections to the non-relativistic limit, is 
useful in obtaining a quantitative understanding of the meson spectrum as well as 
allowing a comparison with other relativistic calculations. We obtain a satisfactory 
description of the meson spectroscopy with reasonable quark masses in the context of 
the three different potentials, linear, harmonic and Martin potentials, which are 
commonly used for the qcj system. 

For the sake of comparing our results with earlier calculations we take the following 
parameters and quark masses: 

(i)  Linear potential [12]: 

V (  r )  = B + Ar 

B, = - 1 .OS0 GeV 

A = 0.300 GeV2 

B, = - 1.720 GeV 

m, = 2.000 GeV 

Bb = - 1.490 GeV 

m, = 0.475 GeV mb = 5.174 GeV. 

(ii) Harmonic oscillator potential [ 131: 

V (  r )  = B + Ar2 A = 0.030 GeV3 

B, = - 0.636 GeV B, = -0.361 GeV Bb = - 1 .ooo GeV 

m, = 0.518 GeV m, = 1.566 GeV mb = 5.174 GeV. 
(iii) Martin potential [14]: 

V (  r )  = B + Ar'.' 

A = 6.8698 and B = -8.064 (both in appropriate GeV units) 

m, = 0.518 GeV m, = 1.8 GeV mb = 5.174 GeV. 
Predictions of various mass spectra ensuing from the use of the linear, harmonic and 
Martin potentials, along with the respective values of previous calculations, are presen- 
ted in table 1. For the linear potential, our results compare fairly well with those 
obtained by Kang and Schnitzer [ 121, who used an interpolation technique based on 
the WKB theory. For the harmonic oscillator potential, our results have been compared 
with those of Ram and Halasa [ 131. In this case also, we observe better agreement of 
our results with experiment [15]. It may be mentioned here that in both cases the 
relativistic corrections are in general in the right directions. The corrections are typically 
within 5% for the c- and b-quark systems. For the strange quark mesons the relativistic 
correction increases sharply with the increase of n, and I values and consequently our 
calculation up to order l / c 2  is not adequate. However, for the low-lying mesons 
we obtain reasonably nice results. 
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h 

h 
0 
v 
m 

d 

0 0 0 0 -  

- " O O  

n a m  
o c ? ?  
"r- 

2 2 2  

m - m  
m - *  - - I -  

0 0 0  

- m m  
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For the Martin potential, the relativistic corrections slightly worsen the non- 
relativistic predictions. This is quite expected as the parameters of this potential were 
determined assuming that a non-relativistic treatment will fit the data best. It is then 
reasonable to do a relativistic calculation for the Martin-like potential provided one 
redetermines the parameters A and B by fitting the relativistic predictions with the 
experimental data. 

3.2. Leptonic decay width 

Since we are now dealing with the Schrodinger-like equation (8), we can also calculate 
the leptonic decay width of a heavy neutral vector meson using the familiar Van 
Royen-Weisskopf formula [ 161 

in which Mu is the mass of the meson and +LO) is the total wavefunction of the 
composite system evaluated at the origin. +(r ,  8,cp) is related to the reduced radial 
wavefunction un, , , (r)  in (12) by 

in which Y;"( I$, cp) are the spherical harmonics (for N = 3). 
+(r,  i, cp) = r ( 1 - N ) / 2  un,,(r) Y F ( ~ ,  

We compute 1+(0)12 for the s wave using the well known identity [16] 

and obtain finally 

in which 

w 
so= 5 ( - l ) j ( n , + T ) ! T ( j + - ! ) r ( l + Z n , - j - y  k 2  

j=O w w 

k - 2  k + v - l  

w w 

k - 2  
w 
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One must note that the relativistic corrections in our expressions come through the 
l / c 2  dependence of the effective potential U ( r )  given in (9). Using (33) in (32), one 
may compute the leptonic decay width of heavy vector mesons, taking into account 
the relativistic effect. 

Before proceeding further for numerical calculation, we would like to emphasise 
that for the linear and  harmonic oscillator potentials ( v =  1 and v = 2 )  the non- 
relativistic part of the decay width does not vary with the quantum number n,, and 
consequently the relativistic part alone is not adequate to generate sufficient variation 
of the widths as required for different quantum states of the vector mesons. For this 
reason we give here the calculated ratios of the leptonic widths of + and y systems 
for the Martin potential only and compare those with the available experimental values 
[15]. The results are 

(2S/lS),  =0.423 

(3S/lS),  = 0.260 

(2S/ lS) ,  =0.515 

(3S/lS),  = 0.349 

experimentally: 0.45 * 0.06 

experimentally: 0.16 i 0.04 

experimentally: 0.45 * 0.04 

experimentally: 0.33 * 0.04. 

This comparison provides a check of our relativistic leading-order bound-state 
wavefunctions. Except for the 3S/ 1 s  leptonic width ratios for charmonium, the 
agreement of our predicted results with the experimental values is reasonably good in 
view of the leading-order calculation. Further accuracy may be achieved by using 
non-leading terms in the wavefunction of [ 51. However, that involves complicated 
analytic expressions which we avoid here. 

4. Discussion 

In this paper we have generalised the shifted large-N method (originally developed 
for the Schrodinger equation) to obtain the relativistic mass spectra and  wavefunctions 
of mesons which are composite systems of quarks bound to each other by power-law 
type confining potentials. The main trick of our calculation lies in the manipulation 
of converting the KG equation to an  effective Schrodinger-like equation. We have also 
given a prescription for the choice of the relativistic shift parameter. The formalism 
has been developed without sacrificing the elegance and accuracy of the non-relativistic 
results achieved previously by Sukhatme and  his co-workers. Our relativistic shifted 
large-N expansion method not only gives consistent results for the mesonic systems, 
but has a major advantage over the previous relativistic calculations as it gives simple 
compact analytic expressions for the non-relativistic as well as for the relativistic parts 
of the energy eigenvalues and eigenfunctions. One may verify that numerical results 
can be obtained even with the help of a desk calculator. Furthermore, the method 
enables one to see clearly the algebraic factors responsible for individual contributions 
to the non-relativistic and  relativistic components of a physical quantity. 

As a final remark, we would like to mention that our method may be useful in 
obtaining analytic expression for relativistic single-electron ( nl, n ’ l ’ )  dipole transition- 
matrix elements for radiative transitions between atomic inner shells [ 171. Results for 
various bound-bound transitions for atomic inner shells have recently been obtained 
using an  analytic perturbation theory [18] for relativistic systems. Study of these 
parameters from the standpoint of the present non-perturbative relativistic approach 
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may have significance in atomic phenomena. Work along these lines is in progress 
and will be reported later. 
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